

Morphological processing

Morphologically complex words processed through their constituent morphemes (e.g. Amenta & Crepaldi, 2012; Bradley, 1979; Rastle et al., 2000; Taft and Forster, 1976)

Established primarily through priming paradigms (e.g., Boudewyn et al., 2012; Camblin et al., 2007)

Priming and masked priming paradigm

Priming:

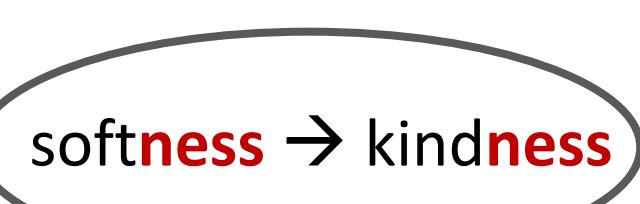
- Presentation of two consecutive words
- How presentation of 1st word (the prime) influences the response to the 2nd word (the target)

(e.g., Boudewyn et al., 2012; Camblin et al., 2007)

Masked priming:

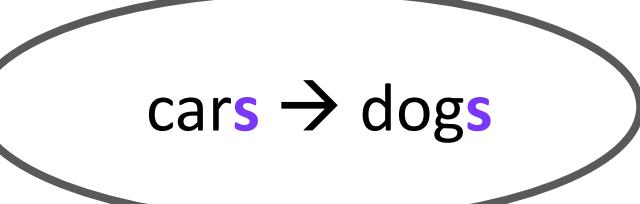
- Prime is presented for very short time, outside of awareness (i.e., is "masked")
- Tackles relationships between words in the lexicon strategy-free

Morphological priming


Stem priming

- Shared stem = facilitated recognition (e.g., Bradley, 1979)

Suffix priming


- Controversial results (Duñabeitia et al., 2008; Marslen-Wilson et al., 1994; Giraudo & Grainger, 2003)

- Type of prime matters

- Word prime: lexical competition (Crepaldi et al., 2016; Davis & Lupker, 2006)

- Nonword prime: priming more reliably observed (Crepaldi et al., 2016)

**DERIVATIONAL
SUFFIXES** ✓

**INFLECTIONAL
SUFFIXES** ?

Present study

Research Question

Does facilitation of word recognition differ when word is preceded by stem or inflectional suffix prime?

- Two experiments in Slovenian: → inflectionally rich language
- Masked priming paradigm
- Lexical decision task
- Participants native speakers of Slovenian

References

Rastle, K., Davis, M. H., Marslen-Wilson, W. D., Tyler, L. K., 2000. Morphological and semantic effects in visual word recognition: A time-course study. *Lang. Cogn. Process.* 15 (4-5), 507–537.

Boudewyn, M. A., Gordon, P. C., Long, D., Polse, L., Swaab, T. Y., 2012. Does discourse congruence influence spoken language comprehension before lexical association? Evidence from Event-Related potentials. *Lang. Cogn. Process.* 27 (5), 698–733.

Camblin, C. C., Gordon, P. C., Swaab, T. Y., 2007. The interplay of discourse congruence and lexical association during sentence processing: Evidence from ERPs and eye tracking. *J. Mem. Lang.* 56 (1), 103–128.

Bradley, D., 1979. Lexical representation of derivational relation.

Duñabeitia, J. A., Perea, M., Carreiras, M., 2008. Does darkness lead to happiness? Masked suffix priming effects. *Lang. Cogn. Process.* 23 (7-8), 1002–1020.

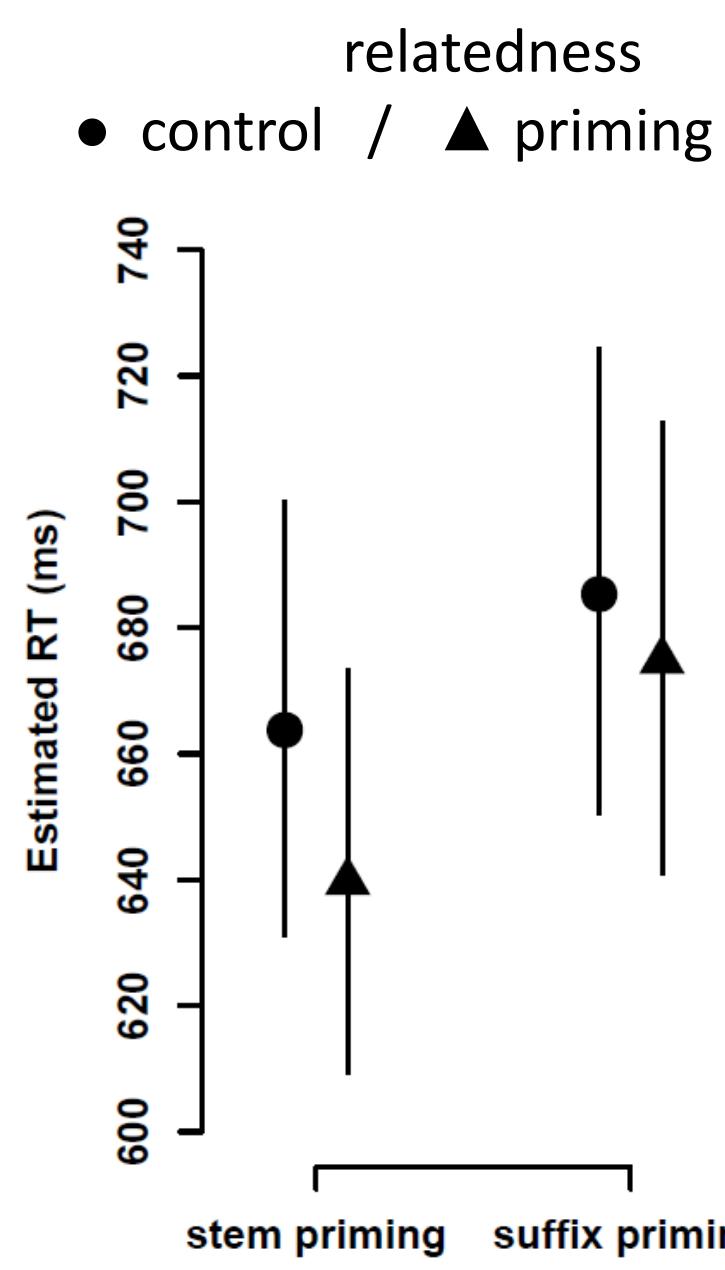
Giraudo, H., Grainger, J., 2003. On the role of derivational affixes in recognizing complex words: Evidence from masked priming. In: *Morphological Structure in Language Processing*.

Marslen-Wilson, W., Tyler, L. K., Waksler, R., Older, L., 1994. Morphology and meaning in the English mental lexicon. *Psychol. Rev.* 101 (1), 3–33.

Crepaldi, D., Hemsworth, L., Davis, C. J., Rastle, K., 2016. Masked suffix priming and morpheme positional constraints. *Q. J. Exp. Psychol.* 69 (1), 113–128.

Lupker, S. J., 2005. The science of reading: A handbook.

Amenta, S., Crepaldi, D., 2012. Morphological processing as we know it: an analytical review of morphological effects in visual word identification. *Front. Psychol.* 3, 232.


Taft, M., Forster, K. I., 1976. Lexical storage and retrieval of polymorphemic and polysyllabic words. *Journal of Verbal Learning and Verbal Behavior* 15 (6), 607–620.

1st experiment

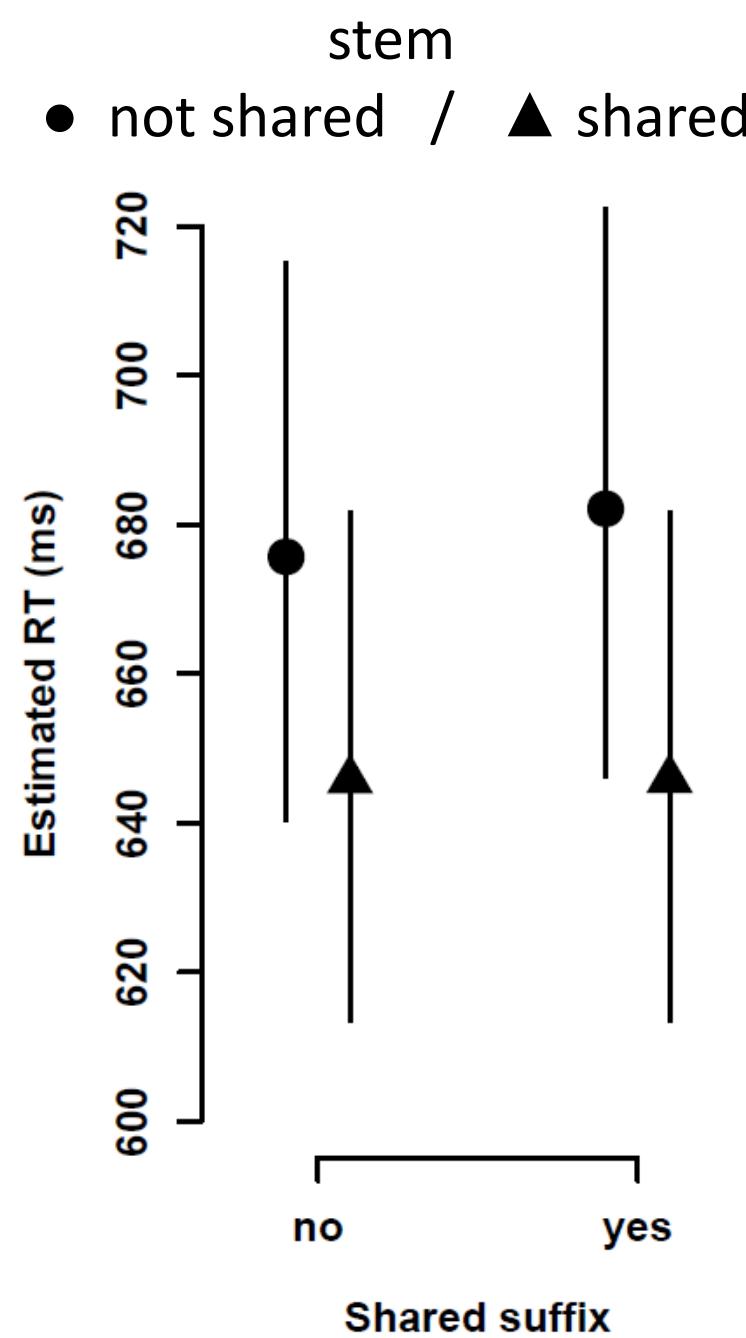
Design

HALJAM	Priming	Control
Suffix priming	MESTAM	MESTOV
Stem priming	HALJOV	JAHTOV

Results

Model parameters:

- Solid priming when sharing a stem $t(2110.8) = -3.55, p < .001$
- Suffix priming does not differ from stem priming $t(2111.2) = 1.49, p = .14$
- Suffix priming per se: $t(2070.2) = -2.03, p = .04$ (outliers-free model) $t(2111.0) = -1.41, p = .16$ (full model)


Stem priming ✓
Suffix priming ?

2nd experiment

Design

LISAM	Stem shared	Stem not shared
Suffix shared	LISAM	METAM
Suffix not shared	LISOV	BEROV

Results

Model parameters:

- Shared stem: $t(2223.5) = -3.93, p < .001$
- Shared suffix: $t(2222.6) = 1.32, p = .19$
- Interaction: $t(2224.0) = -1.41, p = .16$

Stem priming ✓ (= Experiment 1)
Suffix priming ?
Interaction X

Discussion

- Well-established paradigm, with a novel design
- Data suggests stem priming → Stem priming: well-established phenomena → Present study: cross-linguistic evidence
- Data suggest no inflectional suffix priming: → There is a need to rethink suggested affix priming effect!
- Absence of effect possibly due to discrepancy between morpheme types:

	Inflectional suffixes	Derivational suffixes	Stems
Information type	morpho-syntactic	lexical	lexical
Information value/semantics	+	++	+++